INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS

& JCNN
30 JUNE - 5 JULY 2025 |
(&3 InTernATIONAL NEURAL NETWORK SOCIETY

Continual
Anomaly
Detection
Tutorial

Roberto Corizzo

M+ Assistant Professor
(P Department of Computer Science

Kamil Faber

.\ Research Associate
Department of Computer Science

!! AMERICAN UNIVERSITY lllmJJJ
AGH
rcorizzo@american.edu) kfaber@agh.edu.pl
rcorizzo.com @ https://scholar.google.com/citations?us
er=50J30hkAAAAJ&hI=en @
robcorizzo
Tutorial Website

https://qgithub.com/lifelonglab/ijcnn-2025-tutorial/

mailto:rcorizzo@american.edu
https://www.rcorizzo.com
http://x.com/robcorizzo
mailto:kfaber@agh.edu.pl
https://scholar.google.com/citations?user=5oJ30hkAAAAJ&hl=en
https://scholar.google.com/citations?user=5oJ30hkAAAAJ&hl=en
https://github.com/lifelonglab/ijcnn-2025-tutorial/

Preliminaries:
Anomaly Detection

Anomaly detection

e The process of identifying data that represents a deviation from the normal
conditions.

e Paramount importance in multiple fields, such as detection of intrusions in
cybersecurity and detection of defects in manufacturing process.

Anomaly Detection

N
/

Offline (batch)] [Online (adaptation)

Anomaly detection

Applications

Cybersecurity

Healthcare
Industrial monitoring

Normal behavior

Limited access to
data about anomalies

Detection

|Identification of
deviations from
normal

Semi-supervised learning setting

* Many real-world applications are characterized by imbalanced data

* When the imbalance is extreme, classifiers may struggle to properly
represent minority classes

* This is particularly true in anomaly detection settings

* Credit card transactions
* Manufacturing processes
* Sensordata

Semi-supervised learning setting

* Can we give up on modeling minority classes in the classifier?

* Instead of differentiating between positive and negative:
* Train a model to learn the distribution of the normal behavior
* Forwhich data is abundant
* Classify unseen data points as normal/anomaly using a recognition-based approach:
* How distant is the new data point from the model representation of the normal class?

Japkowicz, N., Myers, C., & Gluck, M. (1995, August). A novelty detection approach to classification. In IJJCAI (Vol. 1, pp. 518-523).
https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=74372999ee5a079f7bbef1cdff7ff228cd1145e0

One-Class Models

Novelty Detection with LOF

— learned frontier
training observations
new regular observations
new abnormal observations

-4 -2 2 4
errors novel regular: 8/40 ; errors novel abnormal: 0/40

Local Outlier Factor
(LOF)

iForest
1

iTree

Anomaly

Normal Instance

Isolation Forest

One-class SVM frontier
Data
Excluded data

One Class SVM
(OCSVM)

Python Libraries

e SkLearn

» https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.lsolationForest.html
* https://scikit-learn.org/stable/modules/generated/sklearn.svm.OneClassSVM.html

* https://scikit-learn.org/stable/modules/generated/sklearn.neighbors.LocalOutlierFactor.html
* Keras/Tensorflow
* Define your own autoencoder models

* PyOD

* https://pyod.readthedocs.io/en/latest/
* Established in 2017, has become a go-to Python library for detecting
anomalous/outlying objects in multivariate data.

* PyOD includes more than 50 detection algorithms, from classical LOF (SIGMOD
2000) to the cutting-edge ECOD and DIF (TKDE 2022 and 2023).

Preliminaries:
Continual Learning

Landscape of current ML/DL methods

Translation quality

perfect translation

neural (GNMT)

phrase-based (PBMT)

English English English Spanish French Chinese
>

> > > > >

Spanish French Chinese English English English

Translation model

Limitations

e C(Classical ML/AI systems are limited to performing tasks for which they have been
specifically programmed and trained.

e They are inherently unreliable when encountering different situations.

e Thisis an issue in applications where situations can be unpredictable and the ability to
react quickly and adapt to dynamic circumstances is of primary importance.

Lifelong Machine Learning (or L2M) considers systems that can learn many tasks over a lifetime from one or more domains.

They efficiently and effectively retain the knowledge they have learned and use that knowledge to more efficiently and effectively
learn new tasks.

DARPA L2M

Lifelong Learning desiderata for Al

| L2M is concerned with learning machines that will improve |
their performance over their lifetimes

Adapt to
New Conditions

Continuously

Improve Performance
= Current Al
= Qur products

Improves at -
S
i the task f o ey Adapt; to
changing

————————————————————— < - - - environment
3 ! 3 I
5 : : .
= | £ l
“x(% Training , Fielded ‘&q:Cj Training | Can't adapt to
a Fielded ' a ! new mission

L > ’
Time Time

Situation may change after training and
fielding (external, internal)

Current ML based on large

I
[
[
[
I
[
[
I
I
[
[
I
I
[
[
[
I
[
[
datasets; data may be scarce I
I

Source: Hava Siegelmann keynote at HLAI

Core Capabilities of a L2M System

1. Continual learning

2. Adaptation to new tasks and circumstances
3. Goal-driven perception

4. Selective plasticity

5. Safety and monitoring

Source: Hava Siegelmann keynote at HLAI

Task 1

(permutation 1)

0] /]2[3]4]
5[¢71¢]9

Task 2
(permutation 2)

Task 5
(permutation 10)

.. J ;'”‘r

first second
class class

0]/

first second
class class

first second
class class

first second

first second
class class

A

Source: ContinualAl

A

Lifelong Learning: A simplistic scenario

Permuted MNIST

Split MNIST

Lifelong Learning: A simplistic scenario

Data that does not exist yet

%@D@@%% ® 0.2 @
T ®®®%@
® 90 @

®®@)[[@99 @

Lifelong Learning and catastrophic forgetting

Catastrophic forgetting is the tendency of an model to completely and abruptly forget previously learned
information upon learning new information. Mostly due to Gradient Descent.

»- finetuning: 21.30 (26.90) R-PM 4.5k: 36.09 (10.96) R-FM 4.5k: 37.31 (9.21) —— GEM 4.5k: 45.13 (4.96) iCaRL 4.5k: 47.27 (-1.11)
joint*: 55.70 (n/a) R-PM 9k: 38.69 (7.23) R-FM 9k: 42.36 (3.94) —— GEM 9k: 41.75 (5.18) —— iCaRL 9k: 48.76 (-1.76)
Evaluation on Task
T1 T2 T3 T4 TS T6 T7 T8 T9 T10
60
50 ~— X7
! A P
L 40 \/\/ H 4
IS
= 1
e :
530 §
o
o
<
20
10
T1 T2 T3 T4 T5 T6 T7 T8 T9 T10
Training Sequence Per Task

The Stability-Plasticity Dilemma:

e Remember past concepts
e Learn new concepts
e Generalize

De Lange, M., Aljundi, R., Masana, M., Parisot, S., Jia, X., Leonardis, A., ... &
Tuytelaars, T. (2021). A continual learning survey: Defying forgetting in classification

tasks. IEEE transactions on pattern analysis and machine intelligence, 44(7),
3366-3385.

Outline

1. Motivation for continual anomaly detection
2. Challenges of anomaly detection in continual learning
3. Scenarios, metrics, and strategies

4. pyCLAD: A universal framework for continual lifelong
anomaly detection

Outline

1. Motivation for continual anomaly detection

Open gaps in state-of-the-art

e
@ Anomaly detection

v Single training
v Online learning with
forgetting

[1] Zamanzadeh Darban, Zahra, et al. "Deep learning for time series anomaly detection: A survey." ACM Computing Surveys
57.1(2024):1-42.

[2] Aggarwal, Charu C., and Charu C. Aggarwal. An introduction to outlier analysis. Springer International Publishing, 2017.
[3] Ruff, Lukas, et al."A unifying review of deep and shallow anomaly detection." Proceedings of the IEEE 109.5 (2021):
756-795.

Open gaps in state-of-the-art
@ Continual learning

v Image classification
v Object recognition
v Reinforcement Learning

[1] Wang, Liyuan, et al. "A comprehensive survey of continual learning: Theory, method and application." IEEE Transactions on

Pattern Analysis and Machine Intelligence (2024).
[2] Parisi, German |., et al. "Continual lifelong learning with neural networks: A review." Neural networks 113 (2019): 54-71.

[3] Mitchell, Rupert, et al."Continual Learning Should Move Beyond Incremental Classification." arXiv preprint
arXiv:2502.11927 (2025).

Open gaps in state-of-the-art

r =1

@ Anomaly detection @ Continual learning

v Single training v Image classification

v Online learning with v Object recognition
forgetting v Reinforcement Learning
Continual learning Anomaly detection

@ Continual anomaly detection

] Anomaly detection models are often embedded
in evolving environments

] Opportunity to create methods more robust to
real life conditions

I Unique challenges

Continual anomaly detection works

Documents by year

25
20

15

Documents

10

2019 2020 2021 2022 2023 2024 2025
Year

((TITLE-ABS-KEY ("continual learning" OR "lifelong learning") AND TITLE-ABS-KEY ("anomaly detection"))
OR (TITLE-ABS-KEY ("continual anomaly detection”) OR TITLE-ABS-KEY ("lifelong anomaly detection")))
AND (LIMIT-TO (SUBJAREA, "COMP")

Non-Lifelong Anomaly Detection

Iteration 1

Iteration 2

Model has knowledge of this task [| Model has no knowledge of this task

D Delay deriving from model update —— Current task

Model is being updated

A scenario with four recurring tasks T1, T2,
T3, T4.

Conventional anomaly detection requires
constant model updates and results in
detection delays.

Non-Lifelong Anomaly Detection

Iteration 1

A scenario with four recurring tasks T1, T2,
T3, T4.

Iteration 2

Conventional anomaly detection requires
constant model updates and results in
detection delays.

Iteration 1 \ -

Lifelong learning mitigates this burden
by retaining knowledge of tasks

(Iteration 2
o

Model has knowledge of this task [| Model has no knowledge of this task Faber, K., Corizzo, R., Sniezynski, B., & Japkowicz, N. (2024).

[] | Delay deriving from model update ——> Current task Lifelong continual learning for anomaly detection: New

challenges, perspectives, and insights. /[EEE Access, 12,
Model is being updated 41364-41380.

Non-lifelong Anomaly Detection

Adaptation -> Forgetting

Model training/update as new data is received

tl tl \
b) 0 O t X AL T t
. :' \:—\::«:‘\,:“ t2) ;‘ X } = o 2 ! _"’\,__l 3 T 2
b ",\/_)\) . & - = =
, fit og fit o
fit s ®. - t4 ; Bg
T T3 ~ Q000 o Ty > a0 @
’ ®eceo0 bebd L
i3 t3
s [=)

,,,,,

Fading/forgotten task

Set of tasks that the model is able to deal with

Normal data local to a task (incorporated by the model)

Legend: Initial model training and update

Example of Inference with normal +

10]@,

anomaly data (all tasks)

Normal data correctly classified as normal

(without task identification)
Correctly classified anomalies

Normal data misclassified as anomaly

Legend: Inference

Comparison of training/update and inference for non-lifelong and lifelong
anomaly detection in the scenario with four tasks T1, T2, T3, T4

Non-lifelong Anomaly Detection
Adaptation -> Forgetting

Lifelong Anomaly Detection
Adaptation + Knowledge retention

Model training/update as new data is received Example of Inference with normal +
anomaly data (all tasks
7 \ y ()

= ®@® 3' <00
k 1,12, T3, Ty /

() Normal data correctly classified as normal
200 Fadingfforgotten task T1...T,| Setof tasks that the model s able to deal with (without task identification)
. Qg ® Correctly classified anomalies
OO Normal data local to a task (incorporated by the model) @) Normal data misclassified as anomaly
Legend: Initial model training and update Legend: Inference

Comparison of training/update and inference for non-lifelong and lifelong
anomaly detection in the scenario with four tasks T1, T2, T3, T4

Takeaways

e Conventional (non-continual) anomaly detection leads to model that:

©)

©)

©)

©)

©)

©)

Only adapt to the new normal class distribution -> forgetting past knowledge
Are unable to leverage past skills or combine them with recent skills

Are evaluated in simplistic experimental settings

Require significant computational resources

Do not leverage task similarity and knowledge transfer across tasks

Lack of comprehensive view of the environment

e These limitations provide the motivation for continual anomaly detection

Questions?

Outline

2. Challenges of anomaly detection in continual learning

Challenge | :

Limited availability of anomalies compared to normal data (c/ass
imbalance)

Kaggle Credit Card Fraud NASA Turbofan Engine Degradation
e Domain: Finance e Domain: Industrial Equipment Monitoring
e Anomaly Class: Fraudulent transactions e Anomaly Class: Engine failure cycles
e Anomaly Percentage: 0.17% anomalies e Anomaly Percentage: <1%
e Description: Out of 284,807 transactions, only 492 e Description: The majority of operational cycles show no
are fraudulent. degradation until close to failure.

Rare Event Prediction in Aerospace (Airline Incident Reports)

Domain: Transportation Safety

Anomaly Class: Incidents/Failures

Anomaly Percentage: <<0.1%

Description: Incidents such as near misses or mechanical failures are very rare compared to normal flights.

Challenge II:

Possible lack of information about task changes and task identities
(task-incremental vs. task-agnostic).

Aspect Image Classification Anomaly Detection
Task Explicit (e.g., new class added in Task | Implicit (change in data distribution, new
boundaries 2) anomaly types without notice)

Task identity | Often known or inferable (multi-head Unknown (single model handles all shifts
at test time models, task ID provided) without task ID)

Task shifts Discrete & labeled (new class, new Continuous & unlabeled (novelty, concept
dataset) drift, new attack patterns)

Challenge II:

IC: Tasks are explicit

e New classes or domains clearly labeled
o e.g., Task 1: CIFAR-10, Task 2: CIFAR-100

AD: Task changes are often implicit
e Models face distribution shifts & concept drifts without knowledge of "which task" they are in.
e New anomalies appear without labels, warnings, or task boundaries

Example in real-world domains:

- Cybersecurity: Evolving network services and user behaviors
- Finance: New transaction patterns emerge over time

- Industrial loT: New devices, teardown of existing devices, etc.

Challenge lII:

Evolving definition of normal class where normal data from one task may be
anomalous in another task (task-specific characterization of normal class).

Industrial Predictive Maintenance

e A machine's behavior under normal load patterns in one season (e.g.,
winter production) could be labeled normal.

e The same operating pattern in summer (e.g., overheating risk) may indicate
an anomaly due to environmental changes.

e Maintenance procedures or upgrades can also change the expected
"normal” operational signature.

S. Saxena and K. Goebel, "Turbofan Engine Degradation Simulation Data Set," NASA Ames Prognostics Data Repository.

Challenge lII:

Evolving definition of normal class where normal data from one task may be
anomalous in another task (task-specific characterization of normal class).

Medical Healthcare

Patient population shifts (e.g., age, disease prevalence):

e Ablood pressure reading considered normal in a 25-year-old may be anomalous in an
elderly patient.

e A high heart rate while running is considered normal, and during resting/sleeping it
would be anomaly

e This is a classic challenge when deploying machine learning systems across hospitals or
demographics.

Challenge |V:

Models challenged to incorporate new behaviors of the normal class, while
retaining knowledge of previously observed behaviors and being exposed to
new types of anomalies (semi-supervised stability-plasticity).

Credit Card Fraud Detection

Consumer habits evolve:

e Buying patterns shift (e.g., online subscriptions rise, international travel declines or rises).
e The model must:

o Update its concept of normal spending behavior;

o Maintain ability to detect previously known fraud patterns;

o Detect new fraud techniques (e.g., synthetic IDs, virtual cards).

Bauder et al., A Survey on Concept Drift Adaptation for Fraud Detection, ACM Computing Surveys, 2021.

Challenge |V:

Models challenged to incorporate new behaviors of the normal class, while
retaining knowledge of previously observed behaviors and being exposed to
new types of anomalies (semi-supervised stability-plasticity).

Cybersecurity

CICIDS-2017 (Cybersecurity):

e Data provides different attack types and shifts in normal traffic (e.g., new services,
changed traffic patterns).

e Shows the need to generalize to new behaviors while remembering prior normal/attack
patterns.

Takeaways

e Anomaly detection is a different problem than image classification

e Existence of unique challenges:

Limited availability of anomalies compared to normal data
Lack of information about task changes and task identities
Evolving definition of normal class
Semi-supervised stability-plasticity

O O O O

e It requires specific continual learning approaches

Questions?

Outline

3. Scenarios, metrics, and strategies

From Continual Image Classification...

Continual Image Classification Scenario Types

e Task-incremental: The model is informed about which task is currently
being processed during both the training and the inference stage.

e Class-incremental: Requires the model to infer the task on its own and
provide the classification decision without explicit information about task
identity, but with information on task boundary.

Continual Image Classification Scenario Types

e Task-incremental: The model is informed about which task is currently
being processed during both the training and the inference stage.

e Class-incremental: Requires the model to infer the task on its own and
provide the classification decision without explicit information about task
identity, but with information on task boundary.

e Task-agnostic: Does not assume the availability of task boundaries and
labels. Requires techniques such as lifelong change point detection or
concept drift detection.

Continual Image Classification Scenario Types

e Task-incremental: The model is informed about which task is currently
being processed during both the training and the inference stage.

e Class-incremental: Requires the model to infer the task on its own and
provide the classification decision without explicit information about task
identity, but with information on task boundary.

e Task-agnostic: Does not assume the availability of task boundaries and
labels. Requires techniques such as lifelong change point detection or
concept drift detection.

e Domain Incremental: It challenges the model by changing the data
distribution while keeping the same task that the model needs to solve

Performance Metrics (1)

We want to monitor:

e Performance on current experience

e Performance on past experiences

e Performance on future experiences

e Resource consumption (Memory / CPU / GPU / Disk usage)
e Model size growth (with respect to the first model)

e Execution time

ACC Metric

e After training on all experiences, average accuracy
over all the test experiences.

A Metric

e Average of the accuracy on all experiences at any
point in time.

Try 13 R1.2 R1.3
Tro | Rag Ras Rags

Trs3 | R31 Rss Rss

-
Average Accuracy: ACC = %ZRT.,’
i=1
e
N 7
o Zi:l Zj=1 Ri,j

N(N+1)
2

A

Source: ContinualAl

Performance Metrics (2)

FWT Metric

e Accuracy on experience i after training on last experience Minus
e Accuracy on experience i before training on the first experience
(model init)

e Averaged over i=2,...,T

BWT Metric

e Accuracy on experience i after training on experience T Minus
e Accuracy on experience i after training on experience i

e Averaged over i=1,...,T-1

FORGETTING = - BWT

T’I‘l Rl.l R1,2 R1.3
Tro | Rgn Rap Rajs
Trs | R3q1 R32 Rszs

e —
1 T
FWT = —— R,_1;—b;
T — 1 £ L
=2
1 T-1
BWT = — R, -
T—IZRT’ ki,

Source: ContinualAl

From Continual Image Classification
to
Continual Anomaly Detection

Journals & Magazines > |IEEE Access > Volume: 12 (2]

Lifelong Continual Learning for Anomaly Detection: New Challenges, Perspectives,
and Insights

Publisher: IEEE | Cite This E
Kamil Faber @ ; Roberto Corizzo © ; Bartlomiej Sniezynski @ ; Nathalie Japkowicz @ All Authors

https://lieeexplore.ieee.org/document/10473036

https://ieeexplore.ieee.org/document/10473036

Concept

We define a self-consistent behavior of the normal class, alongside the specific
anomalies occurring with it, as a concept.

A behavior could correspond to a new distribution, change of a performed activity,
or a new state of the environment, depending on the specific analytical context
considered.

Example 1: Monitoring human activities

Resting Sleeping Working Jogging

Example 2: Intrusion detection in cloud environment

Server 1 Server 2 Server 3 Server 4

Wordpress websites Video content Gaming server LLM Chat

Continual Anomaly Detection Scenario Types

e Concept-aware:
o Known concept identifier and concept boundaries.

e Concept-incremental:
o Unknown concept identifier but known concept boundaries.

e Concept-agnostic:
o Unknown concept identifier and concept boundaries.

https://github.com/lifelonglab/lifelong-anomaly-detection-scenarios

https://github.com/lifelonglab/lifelong-anomaly-detection-scenarios

Scenario creation algorithm

Input: ¢ — Number of desired concepts

Input: N, A — Normal/Anomaly data

Input: ¢ — Concepts creation function for normal data
Input: v — Concepts creation function for anomalies
Input: \ — Assignment function

1 Cy < ¢(N,c¢) // Create concepts {Cy,, Cnys---,Cn,}
2 Cy < (A,) // Create concepts {Cay, Cay,---,Ca,}
3T« 0 // Result scenario
4 for Cy, € Cy do

5 Jj < A(Cq4, Cy,) // Match anomaly-normal concepts
6 T <+ T U (Cy;,Cy)) // Add concepts to scenario
7 Ca < Ca — Cy; // Remove used anomaly concept
8 end

9 return 7

https://github.com/lifelonglab/lifelong-anomaly-detection-scenarios

https://github.com/lifelonglab/lifelong-anomaly-detection-scenarios

Scenario creation algorithm

-

Data

O Normal data

‘ Anomaly

/ Data with clustered \

normal data

1@

() Clustered data

Anomaly

Scenario creation algorithm

CC: CR: \ / R: \
ﬁ:lustered anomalies assigned\ /Clustered anomalies assigned Anomalies randomly

to the closest normal concept to random normal concepts assigned to normal clusters
ele QO0q 00
000 © 0 000 0 000
0800 ° 000 ¢ O500 ™ ¢
“0 O ®e 20 8 ¢ 8
. o|l“ 20 | | © e
O @@ O 000
S ACIE) Op 000) 000

Concept 0 Concept1 Concept2 Concept 3

Normal data Q O O
Anomaly O O O O

Evaluation protocol

Evaluation phase

IAfter learning

Model @

\
Learning Learning | Learning
phase phase phase
- < e >
Ty T, T3
Current Concept Future Concepts

Previous Concepts

Training Set
e I

&

Evaluation Set

Metrics

. > Rij
Litelong ROC-AUC = — NiD)
2
N
i— .. R;
S S Rij— R B qu i
BWT = SRSl FWE = =5

2 2

Research question

RQ1: Do lifelong scenarios impact the performance of non-lifelong anomaly detection models?

RQ2: Does the adoption of knowledge retention capabilities of lifelong learning provide a
valuable improvement in the learning capabilities of existing anomaly detection models in
complex lifelong scenarios?

1
1

Does lifelong learning make sense in anomaly detection?

Strategies

e Naive:

o models are updated as new data becomes available, without any smart lifelong learning
strategy to tune adaptation and knowledge retention.

e Multiple Single-Task Experts (MSTE):

o away to simulate upper-bound model performance in a non-lifelong scenario. In this strategy,
a pool or ensemble of models, each of which is an expert for a single concept, is adopted.

e Replay:

o areplay-based method that preserves selected data samples from previous concepts in a
memory buffer, which is limited in size by a parameter known as a budget. When the model
faces a new task (concept), the replay buffer is updated to include the data from the new
concept.

Energy (CC) Energy (CR) Energy (R) NSL-KDD (CC) NSL-KDD (CR) NSL-KDD (R)

| | |
—
B

1.0

ROC-AUC

mmm MSTE
mmm Replay
mmm Naive

UNSW (CC) UNSW (CR) UNSW (R) Wind (CR) Wwind (R)

Wind (CC)
N I B i
g s g : g g g
%)
[e]

The results illustrating the performance gap between non-lifelong and lifelong strategies in lifelong anomaly detection scenarios.

RQ1: Naive vs MSTE RQ2: Naive vs Replay

1.0

0.8

0.6

ROC-AUC

0.

>

0.

N

0.0

a - s

o |
coroo |

« NN .

ccs R B

COPOD
0C-SVM

After learning concept

0.99

o
QO

0.97
Y 096 0.83 0.99
e
& 0.98
) 8 s G Ca

Evaluating on concept

Naive strategy

= 1.0

-0.8

0.6

0.4

0.2

0.0

After learning concept

S 0.99

G 094 0.95

) 0.88 0.92 0.99

G 0.88 0.78 0.96 0.97

S 0.88

CO C1 Cz C3
Evaluating on concept
Replay strategy

0.96

Cs

-1.0

-0.8

0.6

0.4

0.2

0.0

Takeaways

e Performance gap between non-LL/CL and LL/CL learning strategies

o LL/CL scenarios are challenging for non-LL/CL anomaly detection methods.

e Strategies such as Replay can deal with these challenges.

e Continual learning is essential for anomaly detection

o Real-life complexity to the experimental setting

o Advantages compared to static and online scenarios

Questions?

Recent Research and
Open Avenues

Task-agnhostic Anomaly Detection

WATCH: Wasserstein Change Point Detection for High-Dimensional
Time Series Data (IEEE BigData 2021)

LIFEWATCH: Lifelong Wasserstein Change Point Detection (IJCNN 2022)

Base distributio

15 t e 0.5

. . KLd g 08959 KLd g 08959
e \Wasserstein distance

4 5

https://www.computer.org/csdl/proceedings-article/big-data/2021/09671962/1A8hwKdlzmU
https://www.computer.org/csdl/proceedings-article/big-data/2021/09671962/1A8hwKdlzmU

Task-agnhostic Anomaly Detection

LIFEWATCH: Lifelong Wasserstein Change Point Detection

e Detecting changes between tasks
e Detecting recurrent changes
e Recognizing which task is currently being processed (also recurring tasks).

IEEE .
ﬁ WCCI 2022 https://ieeexplore.ieee.org/document/9892891/

https://ieeexplore.ieee.org/document/9892891/

Task-agnhostic Anomaly Detection

LIFEWATCH: Lifelong Wasserstein Change Point Detection

Pool of already discovered distributions: P
Keep track of what is current distribution D¢
Process data in small mini-batches B;
Each distribution D, has a threshold E[Dj]

The threshold helps in determining to which distribution new data belongs to.

ElD;] = e jnax Wa(Bi, D;).

IEEE
ﬁ WCCI 2022 https://ieeexplore.ieee.org/document/9892891/

https://ieeexplore.ieee.org/document/9892891/

Task-agnostic Anomaly Detection

Movement
60
20
50
15
40
30 10
0w 20 T
g TEEE B 5
0 10
=2
= e
%5 0 - 0
@
_g HAR
5100 17.5
=
80 15.0
12.5
60
10.0
40 7.5
5.0
20 :
1 Il 2'5
SR 0 Y S ES—
0 . 0.0
LIFEWATCH M ECP MEAN-SHIFT
B BOCPD BIRCH OPTICS

Traffic

BN DENSTREAM
I HDBSCAN

TRESTLE

Human Activity Recognition (561 features)
Libras movement (90 features)

Urban traffic (17 features)

EEG Measurement with eye open/closed (14
features)

Task-agnostic Anomaly Detection

Hierarchical memory
Consolidation}

Cay 0(1,2)\r—>‘
00 %k o —> Lifelong CPD - J
Crg) [*
| %

initial training +
model update

Memory
Summarization

Inputs
Q

\ 4
Experience

Replay

model update

Replay buffer

Neural Networks

Volume 165, August 2023, Pages 248-273

Faber, K., Corizzo, R., Sniezynski, B., & Japkowicz, N. (2023). VLAD: Task-agnostic vae-based lifelong anomaly detection. Neural

Networks, 165, 248-273.

Change Detection for Novelty Detection

Concept-Incremental

Cl Cl CN

Training Anomaly e
Data N Detection

Inputs/Outputs
Components

Scenario Evaluation Performance
Hyperparameter Data Evaluation
Concept-Agnostic

f?
Training - Change point Anomaly _
detection W Detection Predictions

Distance Evaluation Performance
Measure Data Evaluation

Coil, C., Faber, K., Sniezynski, B., & Corizzo, R. (2025). Distance-based change point detection for novelty detection in concept-agnostic continual
anomaly detection. Journal of Intelligent Information Systems, 1-39.

Handle Contamination in Learning Scenarios

0O Replay

O O
00 method O%
) '®))
@) © R;
-
O 0~
0| o O o0
Oo O ©) 00O
O o| 99| ©
T Ri» Rin R
— O
§ 5 < = >
=5
~ 3
Model

Faber, K., Corizzo, R., Sniezynski, B., & Japkowicz, N. (2022). Active lifelong anomaly detection with experience replay. In 2022 IEEE 9th
international conference on data science and advanced analytics (DSAA) (pp. 1-10). IEEE.

Different Applications and Domains

Malware Detection

Ci
00 .. 0O Experience
- Replay
Training Concept
i=1,2,---,k
R, R,

Replay Buffer

Random Selective

(O Selected data point

) Task/Concept

\ ; ™\ (O Centroid

4 Dat: int
o) * \ 0R 0o Q Data poin
g9 Soogo :

E;
00 .. 00
Evaluation Concept
i=1,2,---,k
Update
R, model One-Class Anomaly
Model Score

LOF IF OCsSVM
ABOD HBOS COPOD
AE

1.0

0.9

0.8

0.7

Lifelong ROC-AUC

0.6

0.5

Cumulative

6 8 10 12
Training task

Chin, M., & Corizzo, R. (2024). Continual Semi-Supervised Malware Detection. Machine Learning and Knowledge Extraction, 6(4), 2829-2854.

Continual Learning in Cloud Computing

t-SNE component 2

Smendowski, M. et al. Continual Anomaly Detection with Selective Temporal Replay for Green Cloud Computing. /ICDM 2025 (Under review)

\

—
=)
==

W N =

-1.0

t-SNE component 1

(a) Post-train concept 1

10

20

-0.5

1.0

t-SNE component 2
o

-20

-20

(b) Post-train concept 2

-10 0
t-SNE component 1

10

20

Train concept ID

t-SNE component 2

0.000

0.030

2 3
Train concept ID

0.000

t-SNE component 1

(c) Post-train concept 3

t-SNE component 2

40

30

20

0.175
0.150
0.125
0.100
0.075
= 0.050
- 0.025

= 0.000

—60

-40

=20 0 20
t-SNE component 1

40 60

(d) Post-train concept 4

Rethinking Continual Strategies for Image Classification

e Replay-based

o Store experiences from past episodes and replay them while training with new tasks
m GEM, A-GEM, GDumb

e Regularization-based

o Put constraints on the loss function to prevent losing knowledge of already learned patterns
m SI|, LwF, EWC, LODE

e Architectural-based

o Focus on the topology of the neural model trying to alter it or leverage the available capacity
to prevent the model from forgetting

m CWRStar, PackNet, WSN, Ada-Q-PackNet, DyTox

e Hybrid
o Provide a mixture of regularization, memory-based, and architectural approaches.
m NPCL, QDI, Pro-KT, SGP

Rethinking Continual Strategies for Image Classification

Replay-based

o Store experiences from past episodes and replay them while training with new tasks
m GEM, A-GEM, GDumb

e Regularization-based

o Put constraints on the loss function to prevent losing knowledge of already learned patterns
m Sl LwF, EWC, LODE

e Architectural-based

o Focus on the topology of the neural model trying to alter it or leverage the available capacity
to prevent the model from forgetting

m CWRStar, PackNet, WSN, Ada-Q-PackNet, DyTox

e Hybrid
o Provide a mixture of regularization, memory-based, and architectural approaches.
m NPCL, QDI, Pro-KT, SGP

Rethinking Continual Strategies for Image Classification

e Architectural-based
o Focus on the topology of the neural model trying to alter it or leverage the available capacity
to prevent the model from forgetting

m CWRStar, PackNet, WSN, Ada-Q-PackNet, DyTox \w Q.)

e Hybrid Task 1 Task 2 Task N

o Provide a mixture of regularization, memory-based, and architectural approaches.
m NPCL, QDI, Pro-KT, SGP

Hybrid Strategies with Compression
e \ " = T ™

‘; RS pruning quantization fine-tuning
LE
LSGRE
722 o g

= /

(o Task 1 H— M Task 1
N 1} | 1] ‘N
/W0,1,1/)\ 11 /\ijm\/ — [l Task 2 <« p- /Wo,m/ 11;w111m\ . [Task 3 «
(111} —>{Nos + ., ’ﬁ (N2,1 —>
Witz L
Qo2 TNz >
KL>threshold i _w =
disjoint weights / -3 KL.<E§hre:h(_>Id
B (no sharing) \ U1} weights sharing
Layer 1 Layer1 Layer 2 Layer 2 Layer 1 - Layer 2 Layer 2
codebook - task 1 codebook - task 2 codebook - task 1 codebook - task 2 codebook -task 3 codebook - task 1 codebook - task 3
0.4576 0 0.2453 00 0.3555 0 0.4521 [IPEI] [00] [ONN0:2453] 00 0.3555 RGN} 0.452
0.3456 Ml 1 .0.1898 01 01417 1 01023 01 0.3456 PEGTRREEE SN 1101 0.1417 BATINEEEEEE R (12
0.0145 10 -0.1145 10 0.0145 plSN 10 -0.1145 ST
-0.3576 11 -0.2967 11 0.3576 MG N 11 -0.2967 IS KN
Replay memory - task 1 Replay memory - task 2 Replay memory - task 1 Replay memory - task 3
out N 1 sample 1 sample 2 ... sample N [joutNj;jsample 1. sample 2. ... sample N out Ny 1 sample 1 sample 2 ... sample N [out Ny,4 sample 1 sample 2 ... sample N
out Ny » sample 1 sample 2 ... sample N §loutNy 2 sample 1 sample 2 ... sample N CEPRCE TR REEL W EP AL B out Ny o sample 1 sample 2 ... sample N
out Ny 3 sample 1 sample 2 ... sample N §i6lt Ny 3'sample 1 sample 2 ... sample N (N R CR T - IR Y jout Ny 3 sample 1 sample 2 ... sample N
Kullback-Leibler

Kullback-Leibler

Pietron, M., Faber, K., Zurek, D., & Corizzo, R. (2025). TinySubNets: An efficient and low capacity continual learning strategy. In
Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 39, No. 19, pp. 19913-19920).

Exploiting structure in tasks scenarios (curriculum learning)

Order matters!

> t
Task 1 Task 2 Task 3 Task 4 Task 5 Task 6
MNIST OMNIGLOT Fashion MNIST SVHN CIFAR10 TinylmageNet
3 % o TR !
| S £ @ g Sg
(@) <_c(>. < *
e
.- - o 2
2| £ 2 @ ZHm . 2
®) =3 c S
- < <L L (&]
Task 6 Task 5 Task 4 Task 3 Task 2 Task 1
; MNIST OMNIGLOT Fashion MNIST SVHN CIFAR10 TinylmageNet
L

Inverse Curriculum Learning Order

Faber, K., Zurek, D., Pietron, M., Japkowicz, N., Vergari, A., & Corizzo, R. (2024). From MNIST to ImageNet and back: benchmarking
continual curriculum learning. Machine Learning, 113(10), 8137-8164.

Outline

4. pyCLAD: A universal framework for continual lifelong
anomaly detection

oyCLAD

e A unified framework for continual anomaly detection.
e Main goal is to foster successful scientific development in continual anomaly
detection by providing robust implementations of common functionalities.

How do | install pyCLAD?

® pyCLAD is available as a Python package on PyPl.

® |t can be installed using tools such as pip and conda.

Conda
conda install -c conda-forge pyclad
Pip

pip install pyclad

https://pypi.org/project/pyclad/

Core concepts

e Scenario: It defines the data
stream so that it reflects:

o Different real-life
conditions

o Challenges faced by the
continual strategy

pyCLAD
/ Scenario

ConceptAware
Conceptincremental
ConceptAgnostic

Strategy \\

Cumulative

S

Replay

MSTE

/444

Callback
ConceptMetric
TimeEvaluation
CallbackComposite

pyOD adapter

1

50+ models supported (e.g.
VAE, IsolationForest, LOF)

(II!'

Concept

ConceptsDataset

!\foProvider
o

Metrlcs

ConceptLevelMetric

ForwardTransfer

ﬁ

N

BackwardTransfer }

ContlnuaIAverasy

Core concepts

e Strategy: A way to manage
model updates.

e Responsible for how, when, and
with which data models should
be updated.

e Its aimis to introduce
knowledge retention while
keeping the ability to adapt.

/ Scenario

ConceptAware
Conceptincremental

ConceptAgnostic

pyCLAD

-

Strategy

Callback
‘ ConceptMetric
‘ TimeEvaluation
‘ CallbackComposite
.

Cumulative
Replay
MSTE

pyOD adapter

1

50+ models supported (e.g.
VAE, IsolationForest, LOF)

Dataset

Concept

ConceptsDataset

klnfoProvider
o

Metrlcs

ConceptLevelMetric

ForwardTransfer

ﬁ

N

BackwardTransfer

- 4)

4

ContlnuaIAverasy

Core concepts

e Model: A machine learning
model used for anomaly
detection.

e Models are often leveraged by
continual strategies that add
additional layer of managing
model's updates.

Conceptincremen tal

ConceptAgnostic

Callback

ConceptMetric

TimeEvaluation

CallbackComposite

\\InfoProvider
J

‘BaseMet ic

RocA c

pyOD adapter

1

50+ models supported (e.g.
VAE, IsolationForest, LOF)

Metrlcs

‘ Conce ptLe elMetric

ForwardTransfer

-

N

)

L BackwardTransfer

ContinualAverage W

Core concepts

e Dataset: A collection of data
used for training and
evaluation of the model

/ Scenario

ConceptAware
Conceptincremental

ConceptAgnostic

_——— Callback

ConceptMetric
TimeEvaluation

CallbackComposite

Replay

MSTE

pyOD adapter

1

50+ models supported (e.g.
VAE, IsolationForest, LOF)

Dataset

{ Concept
ConceptsDataset

\\InfoProvider
"

Metrlcs

pyCLAD
Strategy \

Cumulative

ConceptLevelMetric

ForwardTransfer

lBaseMetr c|

N

BackwardTransfer

/ﬁ/—\/—\ﬁ

)
|
)

ContinuaIAverage/

Core concepts

e Metrics: A way to evaluate
the performance of the model

pyCLAD
/ Scenario

ConceptAware
Conceptincremental
ConceptAgnostic

Strategy

Cumulative
Replay
MSTE

/— Callback

ConceptMetric

pyOD adapter

1

TimeEvaluation

50+ models supported (e.g.
VAE, IsolationForest, LOF)

CallbackComposite

-

f

Concept

ConceptsDataset

Metrlcs \

BaseMetnc ConceptLeveIMetnc
ForwardTransfer }
BackwardTransfer }
ContinualAverage }
/

!\foProvider
" \

Core concepts

e Callbacks: A function that is

called at specific points during Corcopnose
the scenario. (o)

ConceptMetric

pyOD adapter

1

50+ models supported (e.g.
VAE, IsolationForest, LOF)

TimeEvaluation

CallbackComposite

Dataset H Metrics

‘ &J BaseMetric ConceptLevelMetric
’ ConceptsDataset }
BackwardTransfer }
\\InfOPrOVider ContinuaIAverage]/
AN /)

e Useful for monitoring the
process, calculating metrics,
and more.

ForwardTransfer

G G G R

Running an experiment

e Selecting a Scenario
based on a Dataset

e (Choosing desired
Strategy, Models, and an
evaluation scheme
through Metrics and
Callbacks.

ConceptAware

Conceptincremen tal

ConceptAgnostic

_——— Callback

ConceptMetric

TimeEvaluation

CallbackComposite

{ pyOD adapter

1

50+ models supported (e.g.
VAE, IsolationForest, LOF)

!\foProvider
"

Running an experiment

e A user can leverage any
dataset by dividing it into
multiple Concepts and
creating ConceptsDataset.

e A large variety of anomaly
detection models IS
supported through adapters
for the pyQOD library

ConceptAware

Conceptincremen tal

ConceptAgnostic

Callback

ceptMetric

TimeEvaluatio

CallbackComposite

\\InfoProvider
J

‘BaseMet ic

RocA c

Cumulative

Replay

MSTE

pyOD adapter

1

50+ models supported (e.g.
VAE, IsolationForest, LOF)

Metrlcs

‘ Conce ptLe elMetric

ForwardTransfer

-

N

)

L BackwardTransfer

ContinualAve age)

Preparing a Dataset

conceptl_train = Concept("concept1", data=np.random.rand(166, 10))
conceptl_test = Concept("conceptl1"”, data=np.random.rand(106, 10),
labels=np.random.randint(6, 2, 160))

Preparing a Dataset

concept2_train = Concept("concept2", data=np.random.rand(166, 10))
concept2_test = Concept("concept2", data=np.random.rand(106, 10),
labels=np.random.randint(6, 2, 160))

Preparing a Dataset

concept3_train = Concept("concept3", data=np.random.rand(166, 10))
concept3_test = Concept("concept3", data=np.random.rand(106, 10),

labels=np.random.randint(6, 2, 160))

Preparing a Dataset

Build a dataset based on the previously created concepts

dataset = ConceptsDataset(
name="GeneratedDataset",
train_concepts=[conceptl1_train, concept2_train, concept3_train],
test_concepts=[conceptl_test, concept2_test, concept3_test],

Defining model

Define model, strategy, and callbacks
model = OneClassSVMAdapter()
strategy = CumulativeStrategy(model)

time_callback = TimeEvaluationCallback()

metric_callback = ConceptMetricCallback(
base_metric=RocAuc(), metrics=[ContinualAverage(),

BackwardTransfer(), ForwardTransfer()]

)

Selecting strategy

Define model, strategy, and callbacks
model = OneClassSVMAdapter()
strategy = CumulativeStrategy(model)

time_callback = TimeEvaluationCallback()

metric_callback = ConceptMetricCallback(
base_metric=RocAuc(), metrics=[ContinualAverage(),

BackwardTransfer(), ForwardTransfer()]

)

Defining callbacks

Define model, strategy, and callbacks

time_callback = TimeEvaluationCallback()

metric_callback = ConceptMetricCallback(
base_metric=RocAuc(), metrics=[ContinualAverage(),

BackwardTransfer(), ForwardTransfer()]

)

Creating & executing scenario

Execute the concept agnostic scenario

scenario = ConceptAgnosticScenario(dataset=dataset, strategy=strategy,
callbacks=[metric_callback, time_callback])
scenario.run()

Saving results

Save the results
output_writer = JsonOutputWriter(pathlib.Path("output.json"))
output_writer.write([model, dataset, strategy, metric_callback,

time_callback])

Output file

{ "model": { "dataset": {
"name": "OneClassSVM", "name” :
"cache_size": 200, "GeneratedDataset”,
"coefB": 0.0, "tran_concepts_no": 3,
"contamination": 0.1, "test_concepts_no”: 3
"degree": 3, |
"gamma": "auto", "strategy": {
"kernel": "rbf", "name"”: "Cumulative",
"max_iter": -1, "model”: "OneClassSVM"
"nu": 0.5, "buffer_size": 300
"shrinking": true, }.
"tol": 0.001,

"verbose": false

Output file

"concept_metric_callback_ROC-AUC": {
"base_metric_name": "ROC-AUC",
"metrics": {

"ContinualAverage":
"BackwardTransfer":

"ForwardTransfer": 0.50441

'
"concepts_order": [
"concept1”,
"concept2”,
"concept3”

1,

0.50746,
0.01811,

"metric_matrix": {
"conceptl": {

"concept1":
"concept2":
"concept3":

}

oncept2": {

"concept1":
"concept2”:
"concept3":

}

oncept3": {

"concept1":
"concept2”:
"concept3":

oo

(ev B av N av)

(ev B av N av)

.46698,
. 50805,
.49299

.48872,
.52818,
.91220

.92133,
.52818,
.51140

Output file

"time_evaluation_callback": {
"time_by_concept": {
"concept1": {
"train_time": 0.00266,
"eval_time": 0.00505

|

"concept2": {
"train_time": 0.00146,
"eval_time": 0.00409

|

"concept3": {
"train_time": 0.00251,
"eval_time": 0.00424

}

}
"train_time_total": 6.00663,

"eval_time_total": 06.01340

Extensibility & Implementations

Model class

class Model(InfoProvider):

class InfoProvider(abc.ABC):
________,,,,////////”////’/’———————> @abc.abstractmethod
def info(self) -> Dict[str, Any]:
@abstractmethod

def fit(self, data: np.ndarray): ...

@abstractmethod
def predict(self, data: np.ndarray) -> (np.ndarray, np.ndarray):

:param data:
:return: (predicted labels (0 for normal class, 1 for anomaly),
anomaly scores (the higher the more anomalous))

@abc.abstractmethod
def name(self) -> str:

def info(self) -> Dict[str, Any]:
return {"model": {"name": self.name(), **self.additional_info()}}

def additional_info(self):
return {}

Models

- PyOD mode%AE(PyODAdapter(

- encoder_neuron_list=[32, 24, 16],
PyTOI’Ch decoder_neuron_list=[16, 24, 32],

- Anythlng) latent_dim=38,

epoch_num=20,
preprocessing=False,

),

model_name="VAE",

Implementing an AutoEncoder model

class Autoencoder(Model):
def __init__(
self, encoder: nn.Module, decoder: nn.Module, 1lr: float = 1e-2, threshold: float = 6.5, epochs: int = 20
):

self.module = AutoencoderModule(encoder, decoder, 1r)
self.threshold = threshold
self.epochs = epochs

Implementing an AutoEncoder model

class Autoencoder(Model):

def fit(self, data: np.ndarray):
dataset = TensorDataset(torch.Tensor(data))
dataloader = torch.utils.data.DatalLoader(dataset, batch_size=32, shuffle=True)
trainer = pl.Trainer(max_epochs=self.epochs)
trainer.fit(self.module, dataloader)

Implementing an AutoEncoder model

class Autoencoder(Model):

def predict(self, data: np.ndarray) -> (np.ndarray, np.ndarray):
x_hat = self.module(torch.Tensor(data)).detach()
rec_error = ((data - x_hat.numpy()) ** 2).mean(axis=1)

binary_predictions = (rec_error > self.threshold).astype(int)
return binary_predictions, rec_error

Implementing an AutoEncoder model

class Autoencoder(Model):

def name(self) -> str:
return "Autoencoder"

def additional_info(self):
return {
"threshold": self.threshold,
"encoder": str(self.module.encoder)
"decoder": str(self.module.decoder)
"1r": self.module.lr,
"epochs": self.epochs,

Implementing an AutoEncoder model

class AutoencoderModule(pl.LightningModule):
def __init__(self, encoder: nn.Module, decoder: nn.Module, 1lr: float = 1e-2):
super().__init__()
self.encoder = encoder
self.decoder = decoder
self.1lr = 1r

self.save_hyperparameters()
self.train_loss = nn.MSELoss()
self.val_loss = nn.MSELoss()

def forward(self, x):
x = self.encoder(x)
x = self.decoder(x)
return x

def training_step(self, batch, batch_idx):
X = batch[0]
x_hat = self(x)
loss = self.train_loss(x_hat, x)
self.log("train_loss", loss)
return loss

def validation_step(self, batch, batch_idx):
X = batch[0]
x_hat = self(x)
loss = self.val_loss(x_hat, x)
self.log("val_loss", loss)

def configure_optimizers(self) -> OptimizerLRScheduler:
return torch.optim.Adam(self.parameters(), lr=self.lr)

Callbacks: Abstract Implementation

class Callback(abc.ABC):

def

def

def

def

def

def

def

def

before_scenario(self, *args, **kwargs):
pass

after_scenario(self, *args, **kwargs):
pass

before_training(self, *args, **kwargs):
pass

after_training(self, *args, **kwargs):
pass

before_evaluation(self, *args, **kwargs):

pass

after_evaluation(self, *args, **kwargs):
pass

before_concept_processing(self, *args, **kwargs):
pass

after_concept_processing(self, *args, **kwargs):
pass

Callbacks: Concrete Implementation Example

class TimeEvaluationCallback(Callback, InfoProvider):
def __init__(self):
self._time_by_concept = defaultdict(lambda: dict({"train_time": @, "eval_time": 0}))
self._train_start = 0

self._train_time_total = ©

def before_training(self, *args, **kwargs):
self._train_start = time.time()

def after_training(self, learned_concept: Concept):
train_time = time.time() - self._train_start
self._time_by_concept[learned_concept.name]["train_time"] = train_time
self._train_time_total = self._train_time_total + train_time

Callbacks: Concrete Implementation Example

class TimeEvaluationCallback(Callback, InfoProvider):
def __init__(self):
self._time_by_concept = defaultdict(lambda: dict({"train_time": @, "eval_time": 0}))

self._eval_start = 0

1}
(o]

self._eval_time_total

def before_evaluation(self, *args, **kwargs):
self._eval_start = time.time()

def after_evaluation(self, evaluated_concept: Concept, *args, **kwargs):
eval_time = time.time() - self._eval_start
self._eval_time_total = self._eval_time_total + eval_time
self._time_by_concept[evaluated_concept.name]["eval_time"] += eval_time

Callbacks: Concrete Implementation Example

class TimeEvaluationCallback(Callback, InfoProvider):

def info(self) -> Dict[str, Any]:
return {

"time_evaluation_callback": {
"time_by_concept": self._time_by_concept,
"train_time_total": self._train_time_total,
"eval_time_total": self._eval_time_total,

Callbacks: Concrete Implementation Example

class TimeEvaluationCallback(Callback, InfoProvider):
def __init__(self):
self._time_by_concept = defaultdict(lambda: dict({"train_time": @, "eval_time": 0}))
self._train_start = 0
self._eval_start = ©
self._train_time_total = ©
self._eval_time_total = 0

def before_training(self, *args, **kwargs):
self._train_start = time.time()

def after_training(self, learned_concept: Concept):
train_time = time.time() - self._train_start
self._time_by_concept[learned_concept.name]["train_time"] = train_time
self._train_time_total = self._train_time_total + train_time

def before_evaluation(self, *args, **kwargs):
self._eval_start = time.time()

def after_evaluation(self, evaluated_concept: Concept, *args, **kwargs):
eval_time = time.time() - self._eval_start
self._eval_time_total = self._eval_time_total + eval_time
self._time_by_concept[evaluated_concept.name]["eval_time"] += eval_time

def info(self) -> Dict[str, Any]:
return {

"time_evaluation_callback": {
"time_by_concept": self._time_by_concept,
"train_time_total": self._train_time_total,
"eval_time_total": self._eval_time_total,

Strategy: Abstract Implementation Example

class Strategy(InfoProvider):
"""Base class for all continual learning strategies."""

@abc.abstractmethod
def name(self) -> str:

def additional_info(self) -> Dict:
return {}

def info(self) -> Dict[str, Any]:
return {"strategy": {"name": self.name(), **self.additional_info()}}

Strategy: Concrete Implementation Example

class ReplayOnlyStrategy(ConceptIncrementalStrategy, ConceptAwareStrategy):
def __init__(self, model: Model, buffer: ReplayBuffer):
self._model = model
self._buffer = buffer

def learn(self, data: np.ndarray, **kwargs) -> None:
self._buffer.update(data)
self._model.fit(self._buffer.data())

def predict(self, data: np.ndarray, **kwargs) -> (np.ndarray, np.ndarray):
return self._model.predict(data)

Strategy: Concrete Implementation Example

class ReplayOnlyStrategy(ConceptIncrementalStrategy, ConceptAwareStrategy):
def __init__(self, model: Model, buffer: ReplayBuffer):
self._model = model
self._buffer = buffer

def learn(self, data: np.ndarray, **kwargs) -> None:
self._buffer.update(data)
self._model.fit(self._buffer.data())

def predict(self, data: np.ndarray, **kwargs) -> (np.ndarray, np.ndarray):
return self._model.predict(data)

def name(self) -> str:
return "ReplayOnly”

def additional_info(self) -> Dict:
return {"replay_buffer": self._buffer.info()}

Practical Example

Let’s repeat what we just learned and run our first
experiment leveraging pyCLAD.

In this notebook, you will:
e Run your first experiment.
e Run the experiment involving real dataset.
e Have a chance to compare two different

continual learning strategies.

https://github.com/lifelonglab/pyCLAD/blob/main/examples/getting started.ipynb

https://github.com/lifelonglab/pyCLAD/blob/main/examples/getting_started.ipynb

Datasets and loaders £ Hugging Face

https://huggingface.co/datasets/lifelonglab/

Available datasets:
UNSW
NSL-KDD
Wind Energy
PV Energy

Single-line data loader:

dataset = UnswDataset(dataset_type="random_anomalies")

https://huggingface.co/datasets/lifelonglab/continual-unsw-anomaly-detection

Call for Papers
Open World Anomaly Detection Workshop

.

Invited Speakers

The 25th IEEE ﬁ\g?%'tlonal Conference W
e —*on Data*Mining

November12-15, 2025
Washington DC, USA

Camila Gonzalez Christopher Kanan Bartosz Krawczyk
Stanford University of Rochester Rochester Institute of Technology
Organizers

TylerL.Hayes

American University AGH University of Krakow Georgia Institute of Technology

https:/Isites.google.com/view/icdm2025-open-world-workshop

https://sites.google.com/view/icdm2025-open-world-workshop

Summarized takeaways

e Continual anomaly detection is an exciting avenue for research
o New challenges, scenarios, metrics, etc.
e Scenarios can be created from any anomaly detection dataset of choice
e Novel strategies are required to fill a gap:
o Current CL/LL strategies and real-world complexities
e Task Agnostic CL/LL is a more challenging/realistic learning setting.
- Change detection can be adopted to trigger decision making in
learning strategies

Thank you for your
attention!

Questlons’?

Contacts

rcorizzo@american.edu kfaber@agh.edu.pl

ES iy

AGH

Linktree

https://linktr.ee/lifelonglab

https://linktr.ee/lifelonglab
mailto:rcorizzo@american.edu
mailto:kfaber@agh.edu.pl

