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Preliminaries:
Anomaly Detection



Anomaly detection
● The process of identifying data that represents a deviation from the normal 

conditions.
● Paramount importance in multiple fields, such as detection of intrusions in 

cybersecurity and detection of defects in manufacturing process.



Cybersecurity
Healthcare
Industrial monitoring

Applications

Identification of 
deviations from 
normal

Detection

Limited access to 
data about anomalies

Normal behavior

Anomaly detection



Semi-supervised learning setting



Semi-supervised learning setting



One-Class Models 

Local Outlier Factor 
(LOF)

Isolation Forest One Class SVM
(OCSVM)



Python Libraries



Preliminaries:
Continual Learning



Landscape of current ML/DL methods



Limitations

● Classical ML/AI systems are limited to performing tasks for which they have been 
specifically programmed and trained.

● They are inherently unreliable when encountering different situations. 
● This is an issue in applications where situations can be unpredictable and the ability to 

react quickly and adapt to dynamic circumstances is of primary importance.

Lifelong Machine Learning (or L2M) considers systems that can learn many tasks over a lifetime from one or more domains. 

They efficiently and effectively retain the knowledge they have learned and use that knowledge to more efficiently and effectively 
learn new tasks.

DARPA L2M



Lifelong Learning desiderata for AI  

Source: Hava Siegelmann keynote at HLAI



Core Capabilities of a L2M System

Source: Hava Siegelmann keynote at HLAI

1. Continual learning 

2. Adaptation to new tasks and circumstances 

3. Goal-driven perception 

4. Selective plasticity

5. Safety and monitoring 



Lifelong Learning: A simplistic scenario    

Source: ContinualAI 



Lifelong Learning: A simplistic scenario    



Lifelong Learning and catastrophic forgetting  

 The Stability-Plasticity Dilemma: 
● Remember past concepts 
● Learn new concepts 
● Generalize 

Catastrophic forgetting is the tendency of an model to completely and abruptly forget previously learned 
information upon learning new information. Mostly due to Gradient Descent.

De Lange, M., Aljundi, R., Masana, M., Parisot, S., Jia, X., Leonardis, A., ... & 
Tuytelaars, T. (2021). A continual learning survey: Defying forgetting in classification 
tasks. IEEE transactions on pattern analysis and machine intelligence, 44(7), 
3366-3385.



Outline

1. Motivation for continual anomaly detection

2. Challenges of anomaly detection in continual learning 

3. Scenarios, metrics, and strategies 

4. pyCLAD: A universal framework for continual lifelong 
anomaly detection



Outline

1. Motivation for continual anomaly detection

2. Challenges of anomaly detection in continual learning 

3. Scenarios, metrics, and strategies 

4. pyCLAD: A universal framework for continual lifelong 
anomaly detection



Anomaly detection

✓ Single training
✓ Online learning with 

forgetting

Open gaps in state-of-the-art

[1] Zamanzadeh Darban, Zahra, et al. "Deep learning for time series anomaly detection: A survey." ACM Computing Surveys 
57.1 (2024): 1-42.
[2] Aggarwal, Charu C., and Charu C. Aggarwal. An introduction to outlier analysis. Springer International Publishing, 2017.
[3] Ruff, Lukas, et al. "A unifying review of deep and shallow anomaly detection." Proceedings of the IEEE 109.5 (2021): 
756-795.



Continual learning

✓ Image classification
✓ Object recognition
✓ Reinforcement Learning

[1] Wang, Liyuan, et al. "A comprehensive survey of continual learning: Theory, method and application." IEEE Transactions on 
Pattern Analysis and Machine Intelligence (2024).
[2] Parisi, German I., et al. "Continual lifelong learning with neural networks: A review." Neural networks 113 (2019): 54-71.
[3] Mitchell, Rupert, et al. "Continual Learning Should Move Beyond Incremental Classification." arXiv preprint 
arXiv:2502.11927 (2025).

Open gaps in state-of-the-art



Anomaly detection Continual learning

Continual anomaly detection

☐ Anomaly detection models are often embedded 
in evolving environments

☐ Opportunity to create methods more robust to 
real life conditions

☐ Unique challenges

✓ Single training
✓ Online learning with 

forgetting
� Continual learning

✓ Image classification
✓ Object recognition
✓ Reinforcement Learning
� Anomaly detection

Open gaps in state-of-the-art



Continual anomaly detection works

 (( TITLE-ABS-KEY ( "continual learning"  OR  "lifelong learning" )  AND  TITLE-ABS-KEY ( "anomaly detection" ) )  
OR  ( TITLE-ABS-KEY ( "continual anomaly detection" )  OR  TITLE-ABS-KEY ( "lifelong anomaly detection" ) ) ) 
AND  ( LIMIT-TO ( SUBJAREA ,  "COMP" ) 



A scenario with four recurring tasks T1, T2, 
T3, T4. 

Conventional anomaly detection requires 
constant model updates and results in 
detection delays. 

Lifelong learning mitigates this burden by 
retaining knowledge of tasks



A scenario with four recurring tasks T1, T2, 
T3, T4. 

Conventional anomaly detection requires 
constant model updates and results in 
detection delays. 

Lifelong learning mitigates this burden 
by retaining knowledge of tasks

Faber, K., Corizzo, R., Sniezynski, B., & Japkowicz, N. (2024). 
Lifelong continual learning for anomaly detection: New 
challenges, perspectives, and insights. IEEE Access, 12, 
41364-41380. 



Comparison of training/update and inference for non-lifelong and lifelong 
anomaly detection in the scenario with four tasks T1, T2, T3, T4



Comparison of training/update and inference for non-lifelong and lifelong 
anomaly detection in the scenario with four tasks T1, T2, T3, T4



Takeaways

● Conventional (non-continual) anomaly detection leads to model that:

○ Only adapt to the new normal class distribution -> forgetting past knowledge

○ Are unable to leverage past skills or combine them with recent skills

○ Are evaluated in simplistic experimental settings

○ Require significant computational resources 

○ Do not leverage task similarity and knowledge transfer across tasks

○ Lack of comprehensive view of the environment

● These limitations provide the motivation for continual anomaly detection

Questions? 
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Challenge I : 
Limited availability of anomalies compared to normal data (class 
imbalance)

Kaggle Credit Card Fraud 

● Domain: Finance
● Anomaly Class: Fraudulent transactions
● Anomaly Percentage: 0.17% anomalies
● Description: Out of 284,807 transactions, only 492 

are fraudulent.

NASA Turbofan Engine Degradation 

● Domain: Industrial Equipment Monitoring
● Anomaly Class: Engine failure cycles
● Anomaly Percentage: <1%
● Description: The majority of operational cycles show no 

degradation until close to failure.

Rare Event Prediction in Aerospace (Airline Incident Reports)

● Domain: Transportation Safety
● Anomaly Class: Incidents/Failures
● Anomaly Percentage: <<0.1%
● Description: Incidents such as near misses or mechanical failures are very rare compared to normal flights.



Challenge II:

Possible lack of information about task changes and task identities 
(task-incremental vs. task-agnostic).

Aspect Image Classification Anomaly Detection

Task 
boundaries

Explicit (e.g., new class added in Task 
2)

Implicit (change in data distribution, new 
anomaly types without notice)

Task identity 
at test time

Often known or inferable (multi-head 
models, task ID provided)

Unknown (single model handles all shifts 
without task ID)

Task shifts Discrete & labeled (new class, new 
dataset)

Continuous & unlabeled (novelty, concept 
drift, new attack patterns)



Challenge II:

IC: Tasks are explicit 
● New classes or domains clearly labeled 

○ e.g., Task 1: CIFAR-10, Task 2: CIFAR-100

AD: Task changes are often implicit
● Models face distribution shifts & concept drifts without knowledge of "which task" they are in.
● New anomalies appear without labels, warnings, or task boundaries

Example in real-world domains:
- Cybersecurity: Evolving network services and user behaviors
- Finance: New transaction patterns emerge over time
- Industrial IoT: New devices, teardown of existing devices, etc.



Challenge III:

Evolving definition of normal class where normal data from one task may be 
anomalous in another task (task-specific characterization of normal class).

Industrial Predictive Maintenance

● A machine's behavior under normal load patterns in one season (e.g., 
winter production) could be labeled normal.

● The same operating pattern in summer (e.g., overheating risk) may indicate 
an anomaly due to environmental changes.

● Maintenance procedures or upgrades can also change the expected 
"normal" operational signature.

S. Saxena and K. Goebel, "Turbofan Engine Degradation Simulation Data Set," NASA Ames Prognostics Data Repository.



Challenge III:

Evolving definition of normal class where normal data from one task may be 
anomalous in another task (task-specific characterization of normal class).

Medical Healthcare 
Patient population shifts (e.g., age, disease prevalence):

● A blood pressure reading considered normal in a 25-year-old may be anomalous in an 
elderly patient.

● A high heart rate while running is considered normal, and during resting/sleeping it 
would be anomaly 

● This is a classic challenge when deploying machine learning systems across hospitals or 
demographics.



Challenge IV:

Models challenged to incorporate new behaviors of the normal class, while 
retaining knowledge of previously observed behaviors and being exposed to 
new types of anomalies (semi-supervised stability-plasticity).

Credit Card Fraud Detection
Consumer habits evolve:

● Buying patterns shift (e.g., online subscriptions rise, international travel declines or rises).
● The model must:

○ Update its concept of normal spending behavior;
○ Maintain ability to detect previously known fraud patterns;
○ Detect new fraud techniques (e.g., synthetic IDs, virtual cards).

Bauder et al., A Survey on Concept Drift Adaptation for Fraud Detection, ACM Computing Surveys, 2021.



Challenge IV:

Models challenged to incorporate new behaviors of the normal class, while 
retaining knowledge of previously observed behaviors and being exposed to 
new types of anomalies (semi-supervised stability-plasticity).

Cybersecurity

CICIDS-2017 (Cybersecurity):

● Data provides different attack types and shifts in normal traffic (e.g., new services, 
changed traffic patterns).

● Shows the need to generalize to new behaviors while remembering prior normal/attack 
patterns.



Takeaways

● Anomaly detection is a different problem than image classification 

● Existence of unique challenges:
○ Limited availability of anomalies compared to normal data
○ Lack of information about task changes and task identities
○ Evolving definition of normal class
○ Semi-supervised stability-plasticity 

● It requires specific continual learning approaches

Questions? 
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From Continual Image Classification…



Continual Image Classification Scenario Types

● Task-incremental: The model is informed about which task is currently 
being processed during both the training and the inference stage.

● Class-incremental: Requires the model to infer the task on its own and 
provide the classification decision without explicit information about task 
identity, but with information on task boundary. 

● Task-agnostic: Does not assume the availability of task boundaries and 
labels. Requires techniques such as lifelong change point detection or 
concept drift detection.

● Domain Incremental: It challenges the model by changing the data 
distribution while keeping the same task that the model needs to solve
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Performance Metrics (1)

Source: ContinualAI 

We want to monitor:
● Performance on current experience 
● Performance on past experiences 
● Performance on future experiences 
● Resource consumption (Memory / CPU / GPU / Disk usage) 
● Model size growth (with respect to the first model) 
● Execution time

ACC Metric 
● After training on all experiences, average accuracy 
over all the test experiences. 

A Metric 
● Average of the accuracy on all experiences at any 
point in time. 



Performance Metrics (2)

FWT Metric 
● Accuracy on experience i after training on last experience Minus 
● Accuracy on experience i before training on the first experience 
(model init) 
● Averaged over i=2,...,T

BWT Metric 
● Accuracy on experience i after training on experience T Minus 
● Accuracy on experience i after training on experience i 
● Averaged over i=1,...,T-1 
FORGETTING = - BWT

Source: ContinualAI 



From Continual Image Classification 
to 

Continual Anomaly Detection



https://ieeexplore.ieee.org/document/10473036

https://ieeexplore.ieee.org/document/10473036


Concept

We define a self-consistent behavior of the normal class, alongside the specific 
anomalies occurring with it, as a concept. 

A behavior could correspond to a new distribution, change of a performed activity, 
or a new state of the environment, depending on the specific analytical context 
considered.



Example 1: Monitoring human activities

Resting Sleeping Working Jogging



Server 1
Wordpress websites

Server 2
Video content

Server 3
Gaming server

Server 4
LLM Chat

Example 2: Intrusion detection in cloud environment



Continual Anomaly Detection Scenario Types

● Concept-aware: 
○ Known concept identifier and concept boundaries.

● Concept-incremental: 
○ Unknown concept identifier but known concept boundaries.

● Concept-agnostic: 
○ Unknown concept identifier and concept boundaries.

https://github.com/lifelonglab/lifelong-anomaly-detection-scenarios 

https://github.com/lifelonglab/lifelong-anomaly-detection-scenarios


Scenario creation algorithm

https://github.com/lifelonglab/lifelong-anomaly-detection-scenarios 

https://github.com/lifelonglab/lifelong-anomaly-detection-scenarios


Scenario creation algorithm



Scenario creation algorithm



Evaluation protocol



Metrics



Research question

RQ1: Do lifelong scenarios impact the performance of non-lifelong anomaly detection models?

RQ2: Does the adoption of knowledge retention capabilities of lifelong learning provide a 
valuable improvement in the learning capabilities of existing anomaly detection models in 
complex lifelong scenarios?

Does lifelong learning make sense in anomaly detection?



Strategies

● Naive: 
○ models are updated as new data becomes available, without any smart lifelong learning 

strategy to tune adaptation and knowledge retention.

● Multiple Single-Task Experts (MSTE): 
○ a way to simulate upper-bound model performance in a non-lifelong scenario. In this strategy, 

a pool or ensemble of models, each of which is an expert for a single concept, is adopted.

● Replay: 
○ a replay-based method that preserves selected data samples from previous concepts in a 

memory buffer, which is limited in size by a parameter known as a budget. When the model 
faces a new task (concept), the replay buffer is updated to include the data from the new 
concept.



The results illustrating the performance gap between non-lifelong and lifelong strategies in lifelong anomaly detection scenarios.

RQ1: Naive vs MSTE RQ2: Naive vs Replay



Naive strategy Replay strategy



Takeaways

● Performance gap between non-LL/CL and LL/CL learning strategies
○ LL/CL scenarios are challenging for non-LL/CL anomaly detection methods.

● Strategies such as Replay can deal with these challenges.

● Continual learning is essential for anomaly detection 

○ Real-life complexity to the experimental setting

○ Advantages compared to static and online scenarios 

Questions? 



Recent Research and 
 Open Avenues



Task-agnostic Anomaly Detection

● Wasserstein distance

WATCH: Wasserstein Change Point Detection for High-Dimensional 
Time Series Data (IEEE BigData 2021)

LIFEWATCH: Lifelong Wasserstein Change Point Detection (IJCNN 2022) 

https://www.computer.org/csdl/proceedings-article/big-data/2021/09671962/1A8hwKdlzmU
https://www.computer.org/csdl/proceedings-article/big-data/2021/09671962/1A8hwKdlzmU


Task-agnostic Anomaly Detection

https://ieeexplore.ieee.org/document/9892891/

● Detecting changes between tasks           
● Detecting recurrent changes 
● Recognizing which task is currently being processed (also recurring tasks).

LIFEWATCH: Lifelong Wasserstein Change Point Detection

https://ieeexplore.ieee.org/document/9892891/


Task-agnostic Anomaly Detection

https://ieeexplore.ieee.org/document/9892891/

● Pool of already discovered distributions: 
● Keep track of what is current distribution 
● Process data in small mini-batches 
● Each distribution          has a threshold 

The threshold helps in determining to which distribution new data belongs to. 

LIFEWATCH: Lifelong Wasserstein Change Point Detection

https://ieeexplore.ieee.org/document/9892891/


Task-agnostic Anomaly Detection

- Human Activity Recognition (561 features) 
- Libras movement (90 features)
- Urban traffic (17 features)
- EEG Measurement with eye open/closed (14 

features)



Task-agnostic Anomaly Detection

Faber, K., Corizzo, R., Sniezynski, B., & Japkowicz, N. (2023). VLAD: Task-agnostic vae-based lifelong anomaly detection. Neural 
Networks, 165, 248-273. 



Change Detection for Novelty Detection 

Coil, C., Faber, K., Sniezynski, B., & Corizzo, R. (2025). Distance-based change point detection for novelty detection in concept-agnostic continual 
anomaly detection. Journal of Intelligent Information Systems, 1-39. 



Handle Contamination in Learning Scenarios 

Faber, K., Corizzo, R., Sniezynski, B., & Japkowicz, N. (2022). Active lifelong anomaly detection with experience replay. In 2022 IEEE 9th 
international conference on data science and advanced analytics (DSAA) (pp. 1-10). IEEE.



Different Applications and Domains
Malware Detection

Chin, M., & Corizzo, R. (2024). Continual Semi-Supervised Malware Detection. Machine Learning and Knowledge Extraction, 6(4), 2829-2854.



Continual Learning in Cloud Computing 

Smendowski, M. et al. Continual Anomaly Detection with Selective Temporal Replay for Green Cloud Computing. ICDM 2025 (Under review)



Rethinking Continual Strategies for Image Classification  

● Replay-based
○ Store experiences from past episodes and replay them while training with new tasks 

■ GEM, A-GEM, GDumb

● Regularization-based
○ Put constraints on the loss function to prevent losing knowledge of already learned patterns

■ SI, LwF, EWC, LODE

● Architectural-based  
○ Focus on the topology of the neural model trying to alter it or leverage the available capacity 

to prevent the model from forgetting 
■ CWRStar, PackNet, WSN, Ada-Q-PackNet, DyTox

● Hybrid
○ Provide a mixture of regularization, memory-based, and architectural approaches.  

■ NPCL, QDI, Pro-KT, SGP
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Rethinking Continual Strategies for Image Classification  

● Replay-based
○ Store experiences from past episodes and replay them while training with new tasks 

■ GEM, A-GEM, GDumb

● Regularization-based
○ Put constraints on the loss function to prevent losing knowledge of already learned patterns

■ SI, LwF, EWC, LODE

● Architectural-based  
○ Focus on the topology of the neural model trying to alter it or leverage the available capacity 

to prevent the model from forgetting 
■ CWRStar, PackNet, WSN, Ada-Q-PackNet, DyTox

● Hybrid
○ Provide a mixture of regularization, memory-based, and architectural approaches.  

■ NPCL, QDI, Pro-KT, SGP

…
 Task 1   Task 2   Task N



Hybrid Strategies with Compression

Pietron, M., Faber, K., Żurek, D., & Corizzo, R. (2025). TinySubNets: An efficient and low capacity continual learning strategy. In 
Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 39, No. 19, pp. 19913-19920).



Exploiting structure in tasks scenarios (curriculum learning)

Faber, K., Zurek, D., Pietron, M., Japkowicz, N., Vergari, A., & Corizzo, R. (2024). From MNIST to ImageNet and back: benchmarking 
continual curriculum learning. Machine Learning, 113(10), 8137-8164.

Order matters!
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pyCLAD

● A unified framework for continual anomaly detection. 
● Main goal is to foster successful scientific development in continual anomaly 

detection by providing robust implementations of common functionalities.



How do I install pyCLAD?

● pyCLAD is available as a Python package on PyPI. 

● It can be installed using tools such as pip and conda.

https://pypi.org/project/pyclad/


Core concepts

● Scenario: It defines the data 
stream so that it reflects:

○ Different real-life 
conditions 

○ Challenges faced by the 
continual strategy



Core concepts

● Strategy: A way to manage 
model updates. 

● Responsible for how, when, and 
with which data models should 
be updated. 

● Its aim is to introduce 
knowledge retention while 
keeping the ability to adapt.



Core concepts

● Model: A machine learning 
model used for anomaly 
detection. 

● Models are often leveraged by 
continual strategies that add 
additional layer of managing 
model's updates.



Core concepts

● Dataset: A collection of data 
used for training and 
evaluation of the model



Core concepts

● Metrics: A way to evaluate 
the performance of the model



Core concepts

● Callbacks: A function that is 
called at specific points during 
the scenario. 

● Useful for monitoring the 
process, calculating metrics, 
and more.



Running an experiment

● Selecting a Scenario 
based on a Dataset

● Choosing desired 
Strategy, Models, and an 
evaluation scheme 
through Metrics and 
Callbacks. 



Running an experiment

● A user can leverage any 
dataset by dividing it into 
multiple Concepts and 
creating ConceptsDataset. 

● A large variety of anomaly 
detection models is 
supported through adapters 
for the pyOD library 



Preparing a Dataset

concept1_train = Concept("concept1", data=np.random.rand(100, 10))
concept1_test = Concept("concept1", data=np.random.rand(100, 10), 
labels=np.random.randint(0, 2, 100))

concept2_train = Concept("concept2", data=np.random.rand(100, 10))
concept2_test = Concept("concept2", data=np.random.rand(100, 10), 
labels=np.random.randint(0, 2, 100))

concept3_train = Concept("concept3", data=np.random.rand(100, 10))
concept3_test = Concept("concept3", data=np.random.rand(100, 10), 

labels=np.random.randint(0, 2, 100))
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Preparing a Dataset
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labels=np.random.randint(0, 2, 100))



Preparing a Dataset

# Build a dataset based on the previously created concepts
dataset = ConceptsDataset(
    name="GeneratedDataset",
    train_concepts=[concept1_train, concept2_train, concept3_train],
    test_concepts=[concept1_test, concept2_test, concept3_test],
)



Defining model

# Define model, strategy, and callbacks
model = OneClassSVMAdapter()
strategy = CumulativeStrategy(model)

time_callback = TimeEvaluationCallback()
metric_callback = ConceptMetricCallback(
    base_metric=RocAuc(), metrics=[ContinualAverage(), 
BackwardTransfer(), ForwardTransfer()]
)



Selecting strategy

# Define model, strategy, and callbacks
model = OneClassSVMAdapter()
strategy = CumulativeStrategy(model)

time_callback = TimeEvaluationCallback()
metric_callback = ConceptMetricCallback(
    base_metric=RocAuc(), metrics=[ContinualAverage(), 
BackwardTransfer(), ForwardTransfer()]
)



Defining callbacks

# Define model, strategy, and callbacks
model = OneClassSVMAdapter()
strategy = CumulativeStrategy(model)

time_callback = TimeEvaluationCallback()
metric_callback = ConceptMetricCallback(
    base_metric=RocAuc(), metrics=[ContinualAverage(), 
BackwardTransfer(), ForwardTransfer()]
)



Creating & executing scenario

# Execute the concept agnostic scenario
scenario = ConceptAgnosticScenario(dataset=dataset, strategy=strategy, 
callbacks=[metric_callback, time_callback])
scenario.run()

# Save the results
output_writer = JsonOutputWriter(pathlib.Path("output.json"))
output_writer.write([model, dataset, strategy, metric_callback, 

time_callback])



Saving results

# Execute the concept agnostic scenario
scenario = ConceptAgnosticScenario(dataset=dataset, strategy=strategy, 
callbacks=[metric_callback, time_callback])
scenario.run()

# Save the results
output_writer = JsonOutputWriter(pathlib.Path("output.json"))
output_writer.write([model, dataset, strategy, metric_callback, 

time_callback])



Output file

{
    "model": {
        "name": "OneClassSVM",
        "cache_size": 200,
        "coef0": 0.0,
        "contamination": 0.1,
        "degree": 3,
        "gamma": "auto",
        "kernel": "rbf",
        "max_iter": -1,
        "nu": 0.5,
        "shrinking": true,
        "tol": 0.001,
        "verbose": false
    },

"dataset": {
        "name": 
"GeneratedDataset",
        "tran_concepts_no": 3,
        "test_concepts_no": 3
    },
    "strategy": {
        "name": "Cumulative",
        "model": "OneClassSVM",
        "buffer_size": 300
    },



Output file

"concept_metric_callback_ROC-AUC": {
        "base_metric_name": "ROC-AUC",
        "metrics": {
            "ContinualAverage": 0.50746,
            "BackwardTransfer": 0.01811,
            "ForwardTransfer": 0.50441
        },
        "concepts_order": [
            "concept1",
            "concept2",
            "concept3"
        ],

"metric_matrix": {
            "concept1": {
                "concept1": 0.46698,
                "concept2": 0.50805,
                "concept3": 0.49299
            },
            "concept2": {
                "concept1": 0.48872,
                "concept2": 0.52818,
                "concept3": 0.51220
            },
            "concept3": {
                "concept1": 0.52133,
                "concept2": 0.52818,
                "concept3": 0.51140
            }
        }
    },



Output file
"time_evaluation_callback": {
        "time_by_concept": {
            "concept1": {
                "train_time": 0.00266,
                "eval_time": 0.00505
            },
            "concept2": {
                "train_time": 0.00146,
                "eval_time": 0.00409
            },
            "concept3": {
                "train_time": 0.00251,
                "eval_time": 0.00424
            }
        },
        "train_time_total": 0.00663,
        "eval_time_total": 0.01340
    }
}



Extensibility & Implementations



Model class

class Model(InfoProvider):
    @abstractmethod
    def fit(self, data: np.ndarray): ...

    @abstractmethod
    def predict(self, data: np.ndarray) -> (np.ndarray, np.ndarray):
        """
        :param data:
        :return: (predicted labels (0 for normal class, 1 for anomaly), 

  anomaly scores (the higher the more anomalous))
        """
        ...

    @abc.abstractmethod
    def name(self) -> str: ...

    def info(self) -> Dict[str, Any]:
        return {"model": {"name": self.name(), **self.additional_info()}}

    def additional_info(self):
        return {}

class InfoProvider(abc.ABC):

    @abc.abstractmethod
    def info(self) -> Dict[str, Any]: 

...



Models

- PyOD
- PyTorch
- Anything :) 

model = PyODAdapter(
    VAE(
        encoder_neuron_list=[32, 24, 16],
        decoder_neuron_list=[16, 24, 32],
        latent_dim=8,
        epoch_num=20,
        preprocessing=False,
    ),
    model_name="VAE",
)



Implementing an AutoEncoder model
class Autoencoder(Model):
    def __init__(
        self, encoder: nn.Module, decoder: nn.Module, lr: float = 1e-2, threshold: float = 0.5, epochs: int = 20
    ):
        self.module = AutoencoderModule(encoder, decoder, lr)
        self.threshold = threshold
        self.epochs = epochs

    def fit(self, data: np.ndarray):
        dataset = TensorDataset(torch.Tensor(data))
        dataloader = torch.utils.data.DataLoader(dataset, batch_size=32, shuffle=True)
        trainer = pl.Trainer(max_epochs=self.epochs)
        trainer.fit(self.module, dataloader)

    def predict(self, data: np.ndarray) -> (np.ndarray, np.ndarray):
        x_hat = self.module(torch.Tensor(data)).detach()
        rec_error = ((data - x_hat.numpy()) ** 2).mean(axis=1)

        binary_predictions = (rec_error > self.threshold).astype(int)
        return binary_predictions, rec_error

    def name(self) -> str:
        return "Autoencoder"

    def additional_info(self):
        return {
            "threshold": self.threshold,
            "encoder": str(self.module.encoder),
            "decoder": str(self.module.decoder),
            "lr": self.module.lr,
            "epochs": self.epochs,
        }
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Implementing an AutoEncoder model
class AutoencoderModule(pl.LightningModule):
    def __init__(self, encoder: nn.Module, decoder: nn.Module, lr: float = 1e-2):
        super().__init__()
        self.encoder = encoder
        self.decoder = decoder
        self.lr = lr

        self.save_hyperparameters()
        self.train_loss = nn.MSELoss()
        self.val_loss = nn.MSELoss()

    def forward(self, x):
        x = self.encoder(x)
        x = self.decoder(x)
        return x

    def training_step(self, batch, batch_idx):
        x = batch[0]
        x_hat = self(x)
        loss = self.train_loss(x_hat, x)
        self.log("train_loss", loss)
        return loss

    def validation_step(self, batch, batch_idx):
        x = batch[0]
        x_hat = self(x)
        loss = self.val_loss(x_hat, x)
        self.log("val_loss", loss)

    def configure_optimizers(self) -> OptimizerLRScheduler:
        return torch.optim.Adam(self.parameters(), lr=self.lr)



Callbacks: Abstract Implementation
class Callback(abc.ABC):
    def before_scenario(self, *args, **kwargs):
        pass

    def after_scenario(self, *args, **kwargs):
        pass

    def before_training(self, *args, **kwargs):
        pass

    def after_training(self, *args, **kwargs):
        pass

    def before_evaluation(self, *args, **kwargs):
        pass

    def after_evaluation(self, *args, **kwargs):
        pass

    def before_concept_processing(self, *args, **kwargs):
        pass

    def after_concept_processing(self, *args, **kwargs):
        pass



Callbacks: Concrete Implementation Example
class TimeEvaluationCallback(Callback, InfoProvider):
    def __init__(self):
        self._time_by_concept = defaultdict(lambda: dict({"train_time": 0, "eval_time": 0}))
        self._train_start = 0
        self._eval_start = 0
        self._train_time_total = 0
        self._eval_time_total = 0

    def before_training(self, *args, **kwargs):
        self._train_start = time.time()

    def after_training(self, learned_concept: Concept):
        train_time = time.time() - self._train_start
        self._time_by_concept[learned_concept.name]["train_time"] = train_time
        self._train_time_total = self._train_time_total + train_time

    def before_evaluation(self, *args, **kwargs):
        self._eval_start = time.time()

    def after_evaluation(self, evaluated_concept: Concept, *args, **kwargs):
        eval_time = time.time() - self._eval_start
        self._eval_time_total = self._eval_time_total + eval_time
        self._time_by_concept[evaluated_concept.name]["eval_time"] += eval_time

    def info(self) -> Dict[str, Any]:
        return {
            "time_evaluation_callback": {
                "time_by_concept": self._time_by_concept,
                "train_time_total": self._train_time_total,
                "eval_time_total": self._eval_time_total,
            }
        }
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Strategy: Abstract Implementation Example

class Strategy(InfoProvider):
    """Base class for all continual learning strategies."""

    @abc.abstractmethod
    def name(self) -> str: ...

    def additional_info(self) -> Dict:
        return {}

    def info(self) -> Dict[str, Any]:
        return {"strategy": {"name": self.name(), **self.additional_info()}}



Strategy: Concrete Implementation Example

class ReplayOnlyStrategy(ConceptIncrementalStrategy, ConceptAwareStrategy):
    def __init__(self, model: Model, buffer: ReplayBuffer):
        self._model = model
        self._buffer = buffer

    def learn(self, data: np.ndarray, **kwargs) -> None:
        self._buffer.update(data)
        self._model.fit(self._buffer.data())

    def predict(self, data: np.ndarray, **kwargs) -> (np.ndarray, np.ndarray):
        return self._model.predict(data)

    def name(self) -> str:
        return "ReplayOnly"

    def additional_info(self) -> Dict:
        return {"replay_buffer": self._buffer.info()}
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Practical Example 
Let’s repeat what we just learned and run our first 
experiment leveraging pyCLAD.

In this notebook, you will:
● Run your first experiment.
● Run the experiment involving real dataset.
● Have a chance to compare two different 

continual learning strategies.

https://github.com/lifelonglab/pyCLAD/blob/main/examples/getting_started.ipynb 

https://github.com/lifelonglab/pyCLAD/blob/main/examples/getting_started.ipynb


Datasets and loaders
https://huggingface.co/datasets/lifelonglab/

Available datasets:
- UNSW
- NSL-KDD
- Wind Energy
- PV Energy

Single-line data loader:

dataset = UnswDataset(dataset_type="random_anomalies")

https://huggingface.co/datasets/lifelonglab/continual-unsw-anomaly-detection


Call for Papers
Open World Anomaly Detection Workshop 

https://sites.google.com/view/icdm2025-open-world-workshop

https://sites.google.com/view/icdm2025-open-world-workshop


Summarized takeaways

● Continual anomaly detection is an exciting avenue for research
○ New challenges, scenarios, metrics, etc. 

● Scenarios can be created from any anomaly detection dataset of choice
● Novel strategies are required to fill a gap:

○ Current CL/LL strategies and real-world complexities
● Task Agnostic CL/LL is a more challenging/realistic learning setting. 

- Change detection can be adopted to trigger decision making in 
learning strategies 



Thank you for your 
attention!

Questions? 

Contacts  

Linktree
https://linktr.ee/lifelonglab

rcorizzo@american.edu kfaber@agh.edu.pl

https://linktr.ee/lifelonglab
mailto:rcorizzo@american.edu
mailto:kfaber@agh.edu.pl

